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      The adsorption properties of black phosphorus monolayer (BPML) nanostructure toward methanol and ethanol were investigated using 
periodic density functional theory calculations. Despite the subtle in-plane distortions, the integrity of the BPML nanostructure was 
preserved. All complexes revealed interactions of pure electrostatic nature as evinced by the LOL and QTAIM data. The band gap was 
slightly enlarged, and both valence and conduction bands moved upward upon the detection of both alcohols. These observations implied 
that the perfect surface of the semiconductor could be considered as a work function sensor for the alcohol molecules. The adsorption 
energy ranged from -0.13 to -0.36 eV, with relatively stronger physisorption for ethanol.  
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INTRODUCTION 
 
      The isolation of few-layer flakes of black phosphorus 
using mechanical exfoliation unleashed a flurry of activities 
to investigate their physical and chemical properties in the 
realm of two-dimensional (2D) materials [1]. Compared to 
the other two well-known morphologies of phosphorus 
(white and red phosphorus), black phosphorus is more 
chemically stable and more resistant to ignition by fire. It 
also shows remarkable in-plane anisotropies and 
appreciable electron and heat conductance over white and 
red phosphorus [2-5].  
      In earlier studies, several authors have investigated the 
properties and applications of phosphorene nanostructures 
[3,6-7]. Kuo et al. [6] investigated the adsorption of NO, 
NO2, NH3, CO and CO2 molecules on a phosphorene layer 
using density functional theory (DFT). The authors reported 
the superior molecular sensing of phosphorene  compared to  
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graphene which was attributed to the enhanced charge 
transfer between the molecules and phosphorene.  

Methanol (MeOH) and ethanol (EtOH) are two of the 
most widely used alcohols with widespread applications in 
automotive fuels, food, biomedical and chemical industries 
including colors, dyes, drugs, perfumes, etc. Both alcohol 
molecules can result in health problems such as headache, 
drowsiness, irritation of eyes and difficulty in breathing. 
Contrary to EtOH, MeOH is highly toxic with the danger of 
acidosis, dermatitis and blindness. Poisoning by MeOH is 
more severe leading to nausea, abdominal pain, shortness of 
breath, blurred vision, and dizziness. However, due to the 
extensive use of EtOH as a beverage, it is viewed as a 
common cause of car accidents, thus making the 
quantitative detection of EtOH vapor of both medically and 
socially importance [8-10]. Therefore, many researchers 
have investigated the adsorption of MeOH and EtOH on 
different materials from the theoretical point of view [8,11-
20]. Esrafili and Nurazar [12] studied the dissociative 
adsorption  of   MeOH   on  the  (6,0)  zigzag  boron  nitride 
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nanotube structure. Lazar et al. [13] presented combined 
experimental/theoretical results for the adsorption of ethanol 
on pristine graphene. Recently, Mayorga-Martinez et al. 
[11] demonstrated the high sensitivity and selectivity of 
black phosphorus toward MeOH vapor. However, no 
computational studies have been implemented on the 
interactions of these alcohols on black phosphorus type 
structures.   
      In this paper, we report the structural and electronic 
properties of the adsorption complexes formed from the 
interactions of MeOH and EtOH with the surface of black 
phosphorus monolayer (BPML) nanostructure. For this 
purpose, the changes in the electronic properties, adsorption 
energies, and the band gap of the material upon alcohol 
adsorption are presented. To our knowledge, there is no 
computational report on the comparative adsorption of 
MeOH and EtOH on the nanoclusters of BPML. The 
obtained results will be useful in providing further insights 
into the properties of the rediscovered black phosphorus 
toward industrially and environmentally important 
molecules.  
        
COMPUTATIONAL METHOD 
 

The original crystal structure of phosphorene was taken 
from the established previous reports [21]. Two alcohol 
molecules (CH3OH and C2H5OH) were adsorbed on the 
plausible sites of a pristine phosphorene unit cell by 
relaxing all atoms of the guest molecule and the nearby P 
atoms until the system was fully optimized; therefore, two 
different periodic systems  containing 22 and 25 atoms were 
considered. A vacuum space of >20 Å along the c-axis was 
placed to avoid mirror interactions. The 20 k-points were 
included in the band structure calculation for the 
reference black phosphorus material. The adsorption 
energies of the alcohol molecules on the black phosphorus 
nanostructure were calculated by [22-24]: 

 
Eads = EBP-alcohol – (Ealcohol + EBPML)                             (1) 

 
where BP-alcohol is the adsorption complex with the 
related alcohol, BPML is the bare black phosphorous 
monolayer, and alcohol is either MeOH or EtOH vapor 
molecule.   

 
 
      The computations were performed using NWChem 
6.5 [25] and Multiwfn 3.3.8 [26] . Burai 1.3 [27] was used 
for electronic property simulation. The main graphical 
outputs were generated by Mercury 3.6 [28-29]. The 
Perdew-Burke-Eernzerh (PBEPBE) functional [30-31] 
with the 6-31G* basis set [32-33] were applied to the 
optimizations. The energetic data were obtained using the 
hybrid functional Heyd-Scuseria-Ernzerhof (HSE06) [34-
36] coupled with the 6-311G* basis set [37-38].   
      The analysis of the quantum theory of atoms in 
molecules (QTAIM) [39-43] was performed at the 
HSE06/6-311G* level of theory. The same functional 
and basis set were employed to calculate the energy 
levels of the valence and conduction bands and the 
associated band gap according to the frontier molecular 
orbital (FMO) theory [44]. 
 

1. RESULTS AND DISCUSSION 
 
      In theoretical studies [45-47], three highly symmetric 
sites, including T site (on top of a P atom), H site (a hollow 
site on top of a puckered hexagon), and B site (a bridge 
location at the midpoint of the P-P bond), are usually 
considered for the stabilization of adatoms on BPML. 
However, the adsorption site for a molecule is expected to 
be a combination of the mentioned positions. The optimized 
geometries of the BP-MeOH and BP-EtOH adsorption 
complexes are shown in Fig. 1. More detailed 
configurations (from both side and top views) are shown in 
Fig. S1. As shown in Fig. 1, only one adsorption structure 
could be identified for the stabilization of each alcohol on 
the surface of BPML nanostructure. For both alcohols, the 
adsorption complex retained orientations in which the 
hydroxyl group remained closer to the surface, preferably at 
an H site. On the other hand, the carbon atom of MeOH and 
the C-C bond in EtOH mostly preferred T and B sites, while 
standing in a farther distance of the BPML surface. 
      The main geometric parameters are listed in Tables 1 
and 2 for the three optimized structures. Relatively similar 
structural features were found in the structures obtained 
from the periodic calculations for the two alcohol molecules 
(Fig. 1 and Table 2); the θ(POC) values ranged from   
95.6°-158.8° in BP-MeOH and 95.2°-158.4° in BP-EtOH. 
Furthermore, the r(P-O) values ranged from  3.19-4.71 Å  in  
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Fig. 1. Adsorption of methanol (top) and ethanol (bottom) on BPML, optimized at the PBEPBE/6-31G* level  
          of  theory. The orange balls represent  phosphorus, the grey balls represent carbon, the red balls show  

              oxygen, and the smaller white atoms are hydrogen. 
 

 
  Table 1. P-O and P-P Distances (Å) for Different Structures Optimized at the PBEPBE/6-31G* 

                                 Level of Theory 
 

Structure P1-P5 P3-P7 P10-P6 P12-P8 P9-P13 P11-P15 

BPML 2.30 2.30 2.30 2.30 2.30 2.30 

BP-MeOH 2.30 2.30 2.30 2.31 2.30 2.30 

 P1-O P2-O P3-O P10-O P11-O P12-O 

 3.19 3.25 4.71 - - - 

BP-EtOH 2.31 2.30 2.30 2.30 2.30 2.30 

 P1-O P2-O P3-O P10-O P11-O P12-O 

 - - 3.83 3.19 3.19 3.22 
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  Table 2. Selected Interbond Angles (in Degrees) for Different Structures Optimized at the PBEPBE/6-31G*  
                      Level of Theory 

 

Structure P1-O-C P2-O-C P3-O-C P10-O-C P11-O-C P12-O-C 

BPML - - - - - - 

BP-MeOH 158.8 121.3 95.6 - - - 

BP-EtOH - - 113.3 95.2 120.4 158.4 
 
 
        Table 3. QTAIM Analysis and Bond Order (BO) at the HSE06/6-311G* Level of Theory 
 

Structure BCP, RCP and CCP ρ λ1 λ2 λ3 2ρ BO 

BP-MeOH P1-O 0.010 -0.006 -0.005 0.044 0.033 0.115 

 P2-O 0.009 -0.004 -0.003 0.037 0.030 0.141 

 P3-O 0.011 -0.008 -0.006 0.045 0.031 0.106 

 P10-H 0.009 -0.007 -0.007 0.040 0.025 - 

 O-C 0.248 -0.439 -0.434 0.430 -0.443 1.306 

 O-P2-P1 0.009 -0.005 0.003 0.033 0.031 - 

 O-P2-P3 0.009 -0.005 0.003 0.033 0.031 - 

 O-H-P1-P10 0.005 -0.003 0.008 0.012 0.017 - 

 O-H-P3-P10 0.005 -0.003 0.008 0.011 0.016 - 

 P1-P2-P3-P10-O-H 0.005 0.004 0.005 0.006 0.015 - 

BP-EtOH P10-O 0.012 -0.008 -0.006 0.046 0.032 0.103 

 P11-O 0.010 -0.005 -0.003 0.038 0.030 0.104 

 P12-O 0.010 -0.006 -0.005 0.044 0.033 0.108 

 P3-H 0.008 -0.006 -0.006 0.035 0.023 - 

 O-C 0.245 -0.442 -0.420 0.413 -0.449 1.151 

 C-C 0.247 -0.470 -0.451 0.348 -0.573 0.121 

 O-P10-P11 0.009 -0.006 0.003 0.034 0.031 - 

 O-P11-P12 0.009 -0.005 0.004 0.033 0.032 - 

 O-H-P3-P10 0.005 -0.003 0.007 0.010 0.015 - 

 O-H-P3-P12 0.005 -0.002 0.007 0.011 0.016 - 

 P3-P10-P11-P12-O-H 0.004 0.004 0.004 0.006 0.014 - 
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BP-MeOH and 3.19-3.83 Å in BP-EtOH. As can be seen in 
Table 1, the adsorption of alcohol molecules led to 
distortions in the structure of BPML by the elongations as 
large as 0.01 Å in the P-P bonds in the armchair direction. 
At the same time, the integrity of the BPML plane was 
preserved favorably after the adsorption of both alcohol 
molecules. The band structure for the parent black 
phosphorus model (Fig. S2) was also in fair agreement with 
those reported previously [3,48-52].  
      The QTAIM analysis of the adsorption complexes 
deepens our understanding of the nature of surface 
interactions [22-23,53-57]. Table 3 contains the topological 
data for the bond critical points (BCPs). Four BCPs have 
been formed during the sensing of alcohols by BPML. As is 
evident, BCPs were observed for both P…O and P…H 
interactions for both alcohols; each alcohol displayed three 
BCPs for the P…O interactions and one BCP for the P…H 
interactions, which dealt with the H atom of the hydroxyl 
group. Hence, none of the hydrogen atoms of the alkyl 
group was involved in the stabilization of both alcohols. 
However, the bond order for the BCPs was slightly larger 
for BP-MeOH than BP-EtOH. In addition, both alcohol 
molecules have shown four ring critical points (RCPs) and 
one cage critical point (CCP). The localized orbital locator 
(LOL) maps can also delineate the nature of chemical 
bonding in different complexes [7,58]. These contour 
plots are normally analyzed in terms of (3,-3) attractors 
(Γ) to provide recognizable patterns of the interactions 
around bond critical points. All of the interactions in the 
present study were purely electrostatic as evinced by the 
LOL maps depicted in Fig. 2. This conclusion is further 
supported by the values of electron density, hessian 
eigenvalue, and Laplacian of the electron density 
distribution (Table 3). 
      A valuable property that is worth exploring is the band 
gap of the BPML structure and possible changes after the 
interactions with the guest molecules. Figure 3 shows the 
band gaps and the projected DOS profiles of the original 
BPML and the adsorption structures. The DOS plots 
demonstrated that the band gap of the initial BPML sensor 
(1.58 eV at HSE06/6-311G*), which is quite reasonable 
relative to the experimental values of 1.5-2.0 eV, was 
slightly expanded (by 0.02 and 0.03 eV in BP-MeOH and 
BP-EtOH,  respectively).  However,  both  the   valence  and 

 
 
conduction bands shifted toward higher levels after the 
adsorption of both alcohols (refer, e.g., to the changes in Ev 
and Ec of respectively +0.22 and +0.19 eV in the case of 
BP-EtOH). This indicates that the work function is 
decreased and the BPML nanostructure is a good work 
function sensor with respect to ethanol and methanol 
assuming that the Fermi energy level is nearly at the middle 
of the band gap. However, it is also expected that an 
external field can also help with sensing of the analytes on a 
more conventional conductivity sensing basis. Figure 3 also 
shows that the electron densities of states in the valence 
bands of all adsorption nanostructures were determined by 
mainly the pz orbitals of BPML while the s orbitals of 
BPML predominantly contributed to the conduction band of 
the adsorption complex. From the PDOS plots in Fig. 3, it 
can be observed that the 3d orbitals of phosphorus also 
contributed to the total density of states, particularly at the 
higher energy level regions of the conduction band. The 
new states created by the alcohol molecules were located far 
from the band gap, with more notable contributions into the 
conduction bands.   
      Table 4 contains the adsorption energies calculated at 
the HSE06/6-311G* level of theory. The values of Eads for 
BP-MeOH and BP-EtOH were equal to -0.13 and -0.36 eV, 
respectively. This observation indicates that both alcohols 
have been physisorbed on the surface of BPML. From a 
sensing point of view, this implies that the adsorbed 
molecules can be sensed and released quickly. Although 
ethanol exhibits slightly stronger adsorption than methanol, 
it is still in the physisorption mode. This observation 
indicates that methanol could be desorbed slightly more 
rapid than ethanol, thus enjoying a relatively better recovery 
from the surface of BPML.  
 
CONCLUSIONS 
 
      This study investigates the adsorption properties of 
black phosphorus monolayer (BPML) nanostructure toward 
MeOH and EtOH molecules. Only one adsorption 
configuration on hollow and top sites was found to be 
plausible for the adsorption of each alcohol. Subtle in-plane 
expansions (as large as 0.01 Å in the armchair direction) 
occurred to the original framework of BPML nanostructure 
with the adsorption of both MeOH and EtOH; however,  the 
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Fig. 2. LOL maps of the adsorption complexes at the vicinity of the alcohol molecules. 
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Fig. 2. Continued. 
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Fig. 2. Continued. 
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Fig. 3. TDOS and PDOS plots of the adsorption complexes. 
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integrity of the BPML nanostructure was preserved. All of 
the interactions were of pure electrostatic nature as 
confirmed by the LOL maps. The QTAIM analysis revealed 
the formation of three BCPs, four RCPs, and one CCP 
during the detection of each alcohol. The DOS plots 
demonstrated that the band gap of the initial BPML 
nanostructure was slightly expanded (by 0.02 and 0.03 eV 
for the adsorption of methanol and ethanol, respectively) in 
the absence of external electric manipulation. However, the 
valence and conduction bands shifted to higher energy 
levels for both alcohols. The adsorption energies of the 
alcohol molecules varied from -0.13 to -0.36 eV, while the 
stronger adsorption occured for the ethanol case.   
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