Modeling of liquid–liquid equilibria of aqueous alcohol + salt systems using amodified NRTL

Document Type : Regular Article

Authors

1 Professor, Tabriz University

2 Department of physical chemistry, faculty of chemistry, university of Tabriz, Tabriz

Abstract

The modified NRTL (m-NRTL) model is used to represent the excess Gibbs free energy of aqueous (alcohol + electrolyte) solutions. In this work, the m-NRTL model previously developed for representation of vapor-liquid equilibria for (polymer + salt + water) systems has been extended to represent liquid-liquid equilibria of (alcohol + salt + water) systems. The proposed extension is a modified of the extended NRTL model. The model provides a thermodynamic framework for both correlating and predicting the phase equilibrium of complex systems containing both electrolytes and alcohol. The utility of the model is demonstrated with successful representation of (liquid + liquid) equilibrium of several (alcohol + salt + H2O) systems at different temperatures. The liquid–liquid equilibria of the ternary systems involved and the mean activity coefficients of the salt + water systems were used simultaneously to obtain the adjustable parameters. For the several aqueous systems containing an alcohol and a salt the performance of this m-NRTL model was examined at the correlation of LLE data. In addition, the results of suggestion model were compared with those obtained using the Setschenow-type equation, extended Wilson (e-Wilson) and extended NRTL (e-NRTL) models.

Graphical Abstract

Modeling of liquid–liquid equilibria of aqueous alcohol + salt systems using amodified NRTL

Keywords

Main Subjects


[1] P.A. Albertsson, Partitioning of Cell Particles and Macromolecules, 3rd rd., Wiley, New York, 1986.
[2] H. Walter, D.E. Brooks, D. Fisher, Partitioning in Aqueous Two-Phase Systems. Academic Press, New York, 1985.
[3] B.Y. Zaslavsky, Physical Chemistry and Bio Analytical Application. Marcel Dekker, New York, 1995.
[4] G.H. Van Bochove, G.J.P. Krooshof, W. Theo, de Loos, Fluid Phase Equilib 171 (2000) 45.
[5] M.T. Zafarani-Moattar, E. Nemati-Kande, A. Soleimani, Fluid Phase Equilib 313 (2012) 107.
[6] E. Nemati-Kande, H. Shekaari, S.A. Jafari, J. Chem. Eng. Data 57 (2012) 2336.
[7] R. Sadeghi, Chem. Eng. Sci. 61 (2006) 7786.
[8] M.J. Hey, D.P. Jackson, Hong Yan, Polymer. 46 (2005) 2567.
[9] Zafarani-Moattar, M.T. Sadeghi, R. Fluid Phase Equilibr. 181 (2002) 177.
[10] K.S. Pitzer, J. Am. Chem. Soc. 102 (1980) 2902.
[11] C.C. Chen, Y. Song, AIChE J. 50 (2004) 1928.
[12] C.C. Chen, H.I. Britt, J.F. Boston, L.B. Evans, AIChE J. 28 (1982) 588.
[13] C.C. Chen, L.B. Evans, AIChE J. 32 (1986) 444.
[14] C.C. Chen, Y. Song, AIChE J. 50 (2004) 1928.
[15] J.M. Simonson, K.S. Pitzer, J. Phys. Chem. 90 (1986) 3009.
[16] F.M. Pang, C.E. Seng, T.T. Teng, M.H. Ibrahim, J. Mol. Liq. 136 (2007) 71.
[17] J.M. Resa, C. Gonzalez, M. Juez, S.O. de Landaluce, Fluid Phase Equilib. 217 (2004) 175.
[18] K. Rajagopal, S. Chenthilnath, Indian J. Pure. Appl. Phys. 48 (2010) 326.
[19] E. Nemati-Kande, H. Shekaari, S.A. Jafari, Fluid Phase Equilib. 329 (2012) 42.
[20] D.R. Lide, CRC Handbook of Chemistry andPhysics, 87th ed., Taylor and Francis, Boca Raton, FL, 2007.
[21] R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London, 1965.
[22] J. Gmehling, U. Onken, Chemistry Data Series, Vol. 1, DECHEMA, Frankfurt, Germany, 1977.
[23] T. Tsuji, K. Hasegawa, T. Hiaki, M. Hongo, J. Chem. Eng. Data 41 (1996) 956.
[24] R. Sadeghi, R.Golabiazar, E. Parsi, J. Chem. Eng. Data 55 (2010) 5874.
[25] R.N. Goldberg, J. Phys. Chem. Ref. Data 10 (1981) 671.
[26] A. Schunk, G. Maurer, J. Chem. Eng. Data 49 (2004) 944.
[27] M.T. Zafarani-Moattar, P. Jafari, Fluid Phase Equilib. 353 (2013) 50.
[28] M.T. Zafarani-Moattar, J. Gasemi. J. Chem. Eng. Data 47 (2002) 525.
[29] M. Hu, L. Jin, Q. Zhai, S. Li, Z. Liu, Fluid Phase Equilib 232 (2005) 57.
[30] Y. Wang, S. Hu, Y. Yan, W. Guan. CALPHAD 33 2009 726.
[31] E. Nemati-Kande, H. Shekaaei. J. Solution Chem. 41 (2012) 1649.
[32] E. Nemati-kande, H. Shekaari, S.A. Jafari, Fluid Phase Equilib. 321 (2012) 64.
[33] M.T. Zafarani-Moattar, V. Hosseinpour-Hashemi, S. Banisaeid, M.A. Shamsi Beirami, Fluid Phase Equilib. 338 (2013) 37.