Regular Article

Phys. Chem. Res., Vol. 8, No. 1, 139-154, March 2020 DOI: 10.22036/pcr.2019.204016.1681

A New Simple Model to Calculate the Heat Capacity of Pure Ionic Liquids

R. Azadfar^a, M. Shaabanzadeh^{b,*}, H. Hashemi-Moghaddam^a and A. Mohammadi Nafchi^b

^aDepartment of Chemistry and Chemical Engineering, Damghan Branch, Islamic Azad University, Damghan, Iran ^bSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia (Received 4 October 2019, Accepted 12 December 2019)

In recent years, there is a great attention toward the ionic liquids due to their huge potential for separation and reaction technology. Also, the heat capacity of ionic liquids is a substantial parameter for conclusive process designs and engineering calculations. A database for the heat capacity of ionic liquids created by compiling experimental data in the literature covering a period from 1971 to 2016 is reported. In this work, a temperature-dependent equation to the heat capacity for 141 pure ionic liquids is proposed. A database containing 6961 experimental data was used to develop this model. Finally, a 7-parameter simple equation with the capability for predicting the heat capacity of ionic liquids is presented. The accuracy of the new model has been compared to the most precise models in the literature and the comparison indicates that the proposed method provides more accurate results than other models considered in this work. The average absolute percentage deviation from the new model is only 3.83%.

Keywords: Heat capacity, Ionic liquid, Correlation, NIST

INTRODUCTION

Ionic liquids (IL) are a substance class that have attracted much attention since their insignificant vapor pressure and other properties make these substances interesting fluids for many processes and engineering designs. Options of investigations include solvents for using in absorption heat pumps [1], CO₂ removal from gas streams [2,3], and purification of biomaterials [4]. Ionic liquids have various characteristics of common salts which are normally having melting temperatures higher than 273 K [5-14].

The development of ionic liquids for special tasks is currently being followed by many researchers as much anion/cation combinations produce ionic liquids with a set of favorable properties. With rising the availability of experimental source data and their quality, the development of predictive models for ionic liquid properties and computer-aided molecular design (CAMD) of these substances becomes possible [15].

The constant pressure heat capacity (Cp) is specified as a derivative of the enthalpy as a function of temperature and constant pressure [16]. As Cp is linked to some thermodynamic properties like entropy, enthalpy, and Gibbs free energy, having good information about its behavior aids in the alternative study of other related properties. Also, Cp of both liquid and solid-state compounds is used to estimate heat transfer in many chemical operations and processes.

There are many methods available in the literature for the determination of the heat capacity of ionic liquids at constant pressure. Gardas and Coutinho [15] developed a 12-parameter model based on a second-order group additively method. They used a database comprising of 19 ionic liquids with 2,396 data points over a wide temperature range of (196.36-663.10 K). Soriano *et al.* [17] applied a similar approach to Gardas and Coutinho [15] by using anions and cations instead of group contribution methods. Their dataset had 32 ionic liquids and 3,149 data points with a temperature range of (188.06-663.10 K).

^{*}Corresponding author. E-mail: mshaabanoc@damghaniau. ac.ir

Valderrama et al. [18] applied a new approach to estimate the heat capacity of ionic liquids which is called the mass connectivity index (MCI). Sattari et al. [19] developed a new model that combines a genetic function approximation (GFA) with a group-contribution (GC) method approaches for the estimation of liquid heat capacities at constant atmospheric pressure for ionic liquids. Muller and Albert [20] presented temperature-dependent contributions to the heat capacity for 32 anions and 39 cations with 2443 data points. Ahmadi et al. [21] proposed a temperature-dependent model with 13 constant parameters that uses molecular weight, temperature and the number of atoms (such as carbon, oxygen, hydrogen, nitrogen, etc.) in the structure of the ionic liquids as input with a database of approximately 128 different ionic liquids, consisting of 4822 experimental data. Farahani et al. [22] presented a temperature-dependent correlation based on molecular parameters to estimate the heat capacities of ionic liquids. A total data set of 2940 experimental data for 56 ionic liquids was used to develop this correlation. Zhang et al. [23] investigated the concept of the polarity coefficient for ionic liquids and developed a new model for estimating the difference of heat capacities between the vapor phase and the liquid phase of ionic [23]. Oster et al. [24] considered the predictive capabilities of existing models for thermal conductivity and heat capacity of pure ionic liquids, with further improvements based on more accurate investigated structure characterization (DFT) and reparameterization (group contribution methodology).

In this study, we present a simple correlation to cover a wide range of ionic liquids, for more developed applications than all exist in literature. A temperature-dependent correlation, based on the molecular parameters, including molecular weight and the number of elements such as hydrogen, carbon, nitrogen, oxygen, *etc.* in the structure of the ionic liquid, is proposed to predict the heat capacities of pure ionic liquids.

PREDICTION OF HEAT CAPACITY OF IONIC LIQUIDS

In this study, we considered some of the well-known commonly used models that do not require specific coefficients for each substance but based on knowledge of some properties of the liquid-vapor equilibrium or molecular properties. In particular, we selected Ahmadi *et al.* [11], Muller-Albert [20], Farahani *et al.* [22] and Rostami *et al.* [25] models which are the newest most accurate correlations that are valid for the calculation of heat capacity. The correlations considered are presented below:

Ahmadi et al. Method (AHRH)

Ahmadi *et al.* [21] in 2015 presented a 13-parameter correlation for the prediction of the heat capacity of ionic liquids. This is a temperature-dependent correlation that uses temperature, molecular weight and the number of atoms (such as carbon, oxygen, hydrogen, nitrogen, *etc.*) in the structure of the ionic liquids as input parameters. A databank of approximately 128 different ionic liquids, consisting of 4822 data points, was used to develop and validate this equation which includes a temperature ranges from 190-663 K,

$$C_{p} = a_{1}T^{a_{2}} + a_{3}\ln(T) + a_{4}Mw^{a_{5}} + a_{6}C_{A} + a_{7}C_{C} + a_{8}N$$
(1)
+ $a_{9}S + a_{10}O + a_{11}(F + Br + Cl) + a_{12}B + a_{13}$

where T and Mw are the temperature (K) and molecular weight, respectively. The remaining parameters are all structure-related and defined as the number of atoms of: carbon in the anion (CA), carbon in the cation (CC), nitrogen (N), sulfur (S), oxygen (O), phosphorus (P), fluorine (F), bromine (Br), chlorine (Cl) and boron (B). The global constants of Ahmadi *et al.* correlation are presented in Table 1.

Muller-Albert Method

Muller and Albert in 2014 [20] proposed a substancedependent contribution to the heat capacity for 39 cations and 32 anions of ionic liquids. In this method, the NIST Standard Reference database 147 [26] was used to gather heat capacity data for ionic liquids. Muller-Albert correlation is presented as follows:

$$C_{P,ion} = A + BT + CT^2 \tag{2}$$

The parameters for Eq. (2) are given as Supporting

A New Simple Model to Calculate the Heat Capacity of Pure Ionic Liquids/Phys. Chem. Res., Vol. 8, No. 1, 139-154, March 2020.

Constant	Value
a ₁	0.2808
a ₂	1.0854
a ₃	-17.5066
a 4	0.6593
a ₅	1.0793
a ₆	15.9932
a ₇	16.1292
a ₈	-2.8956
a 9	-11.7667
a ₁₀	-1.3729
a ₁₁	-4.1977
a ₁₂	6.7438
a ₁₃	-12.3990

Table 1. The Constant Parameters of Ahmadi *et al.* Correlation

Information in [20]. The heat capacity of the ionic liquids is derived by summing the heat capacity contributions of the cation and anion. If an ionic liquid contains more than one cation or anion, the heat capacity is calculated as:

$$C_{P,jonicliquid} = \sum_{i=cations} x_i c_{P,i} + \sum_{i=anions} x_j c_{P,j}$$
(3)

where x_i and x_j are the molar shares of the cation or anion on all cations or anions, respectively.

Farahani et al. Model (FGMT)

Farahani *et al.* in 2013 [22] proposed a simple 5-term temperature-dependent correlation based on basic molecular parameters to predict heat capacities of ionic liquids. A total data set of 2940 experimental data belonging to ionic liquids were used to develop a general correlation. The model is presented as:

$$C_p = -122.16826 + 0.45794 \times T + 12.8395 \times N_{cation} - 56.85424 \times CH_3 - R_{cation} + 19.25836 \times N_{anion} - 11.36109 \times nH_{anion}$$
(4)

where C_p is the heat capacity of the ionic liquid, *T* is the temperature in Kelvin, N_{cation} and N_{anion} are the number of atoms in cation and anion, respectively, CH_3 -*R* is the number of the methyl group in cation and *nH* is the number of hydrogens in the anion.

Rostami et al. Model (RHKHSR)

Rostami *et al.* [25] presented a hybrid group method of data handling (GMDH) to establish a model estimating the ionic liquid heat capacities. The database was taken from the NIST standard which includes the heat capacities of ionic liquids as a function of temperature and four structural parameters indicated in Eq. (5).

$$\begin{split} C_p &= N_1 = -21.8587 + 0.0568103 \times (N-c) \times N_3 - 0.0669907 \times \\ (N-c) \times N_2 &+ 0.0939589 \times (N-c)^2 - 0.0185935 \times N_2 \times N_3 \\ &+ 0.00737194 \times (N_3)^2 + 1.08368 \times N_2 + 0.0114153 \times (N_2)^2 \end{split}$$

$$\begin{split} N_2 = & 14.1818 + 0.00640075 \times N_5 \times N_7 - 0.00420937 \times N_3 \times N_7 \\ & - 0.00112672 \times (N_7)^2 + 0.691339 \times N_5 + 0.00521464 \times N_3 \times N_5 \\ & - 0.00624998 \times (N_5)^2 + 0.266436 \times N_3 \end{split}$$

(7)

(5)

$$\begin{split} N_3 &= 55.6805 + 2.85758 \times (N_a) + 0.0434574 \times (N-a) \\ &\times N_7 - 0.0332428 \times (N-a) \times N_4 - 0.217541 \times (N-a)^2 \\ &- 0.697195 \times N_7 + 0.00553497 \times N_4 \times N_7 - 0.00274183 \\ &\times (N_7)^2 + 1.46115 \times N_4 - 0.00275876 \times (N_4)^2 \end{split}$$

$$\begin{split} N_4 &= 157.505 - 0.267991 \times (T) - 0.346044 \times (T) \times (CH_3R_c) \\ &+ 0.00162831 \times (T) \times N_7 + 0.000305718 \times (T)^2 + 136.314 \\ &\times (CH_3R_c) + 0.267234 \times (CH_3R_c) \times N_7 + 30.4506 \times (CH_3R_c)^2 \\ &+ 0.000750235 \times (N_7)^2 \end{split}$$

$$N_{5} = -8.20417 + 6.53857 \times (N_{a}) - 0.70425 \times (N_{a}) \times (nH_{a}) - 0.0370242 \times (N_{a}) \times N_{6} + 0.77614 \times (N_{a})^{2} - 7.08343 \times (nH_{a}) - 0.778415 \times (nH_{a})^{2} + 0.959609 \times N_{6} + 0.000294705 \times (N_{6})^{2}$$
(9)

$$\begin{split} N_6 &= -214.728 + 0.769769 \times (T) + 0.0112218 \times (T) \times (N_c) \\ &- 0.00076256 \times (T)^2 + 11.1858 \times (N_c) + 0.38969 \times (N_c) \times (N_a) \\ &- 0.0771166 \times (N_c)^2 + 13.8176 \times (N_a) - 0.334967 \times (N_a)^2 \end{split}$$

$$\end{split}$$
(10)

$$N_{7} = -88.0828 + 14.1091 \times (N_{c}) - 0.0968272 \times (N_{c}) \times (N_{a}) - 0.0163322 \times (N_{c})^{2} + 38.3889 \times (N_{a}) + 1.68527 \times (N_{a}) \times (nH_{a}) - 0.931272 \times (N_{a})^{2} - 40.5504 \times (nH_{a})$$
(11)

Data Preparation

The source data contains 6961 experimental data points for sonic speed of 141 ionic liquids with various pressure and temperatures. The experimental data covered a molecular weight, a wide range of temperatures and heat capacity [26]. A list of the ionic liquids making up the databank and the corresponded information for each liquid is presented in Table 2 and Table 2S. The properties of considered ionic liquids are shown in Table 3 and Table 3S.

RESULTS AND DISCUSSION

The Proposed Model for Heat Capacity

This study tried to find a rapid simple correlation to estimate the heat capacity of the ionic liquids based on experimental data with high accuracy by using temperature and molecular weight. There are some available experimental data in NIST Ionic Liquids Database [26] to allow the proposition of a model for heat capacity of the ionic liquids. After multiple regression analysis, a new equation (Eq. (12)) was suggested as follow:

$$C_{p} = aT^{b} + c(T^{b+l} + Mw) + d(C_{a} + C_{c}) + e(N + S + P) +$$
(12)
f.O+g(-F+Br+Cl+B)

where *T* and *Mw* are temperature (*K*) and molecular weight (g mol⁻¹), respectively. The remaining parameters are defined as the number of atoms of: carbon in the cation (C_c), carbon in the anion (C_a), bromine (*Br*), nitrogen (*N*), fluorine (*F*), oxygen (*O*), phosphorous (*P*), sulfur (*S*), chlorine (*Cl*) and boron (*B*). The constant parameters of Eq. (2) are presented in Table 3 and Table 3S.

To present a more general and accurate atomic correlation than the previous models, a wide set of commonly used ionic liquids has been considered in this work. The number of carbon atoms in the anion and cation, as well as other atoms consisting of sulfur, nitrogen, oxygen, phosphorus, bromine, fluorine, boron and chlorine, were found to be the most effective parameters to identify the behavior of ionic liquids. The functionality for each of the mentioned atoms, similar to previous models, was considered to be a simple additive term which includes the number of a particular atom in the structure multiplied by a constant parameter that is optimized. In the present method, by considering selected atoms as input parameters to the correlation and including mathematical temperature functionality likewise, various regression analysis was carried out on the 6420 training data of the 132 ionic liquids (indicated in the last column of Table 3 and Table 3S) and

Table 2. Name and Structure of Ionic Liquids Considered

A New Simple Model to Calculate the Heat Capacity of Pure Ionic Liquids/Phys. Chem. Res., Vol. 8, No. 1, 139-154, March 2020.

|--|

No.	Name	Formula	No. Data	Mw	T range	C_p range	Use as
1	1-Butyl-3-methylimidazolium hexafluorophosphate	$C_8H_{15}F_6N_2P$	1633	284.18	283.15-524.87	367.3-510	Training
2	1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	$C_{12}H_{19}F_6N_3O_4S_2$	502	447.42	188.06-425.15	572-739	Training
3	1-Ethyl-3-methylimidazolium ethyl sulfate	$C_8H_{16}N_2O_4S$	450	236.29	187.36-377.2	347-570	Training
4	1-Butyl-3-methylimidazolium tetrafluoroborate	$C_8H_{15}BF_4N_2$	374	226.02	181.25-423.15	276.1-520	Validation
5	1-Methyl-3-propylimidazolium bromide	$C_7H_{13}BrN_2$	261	205.1	212.2-370	256.1-307	Training
6	1-Methyl-3-octylimidazolium tetrafluoroborate	$C_{12}H_{23}BF_4N_2$	246	282.13	192.85-370	463.2-544.2	Training
7	1-Ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	$C_8H_{11}F_6N_3O_4S_2$	178	391.31	256.91-463.15	456-559	Training
8	1-Butyl-3-methylimidazolium dicyanamide	$C_{10}H_{15}N_5$	156	205.26	235-372.2	355.9-413.6	Training
9	1-Butyl-3-methylimidazolium trifluoromethanesulfonate	$C_9H_{15}F_3N_2O_3S$	152	288.29	290.98-425.15	417.2-506	Training
10	Trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]imide	$C_{34}H_{68}F_6NO_4PS_2$	150	764	293-463.15	1360-1570	Training
11	Trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate	$C_{38}H_{68}F_{18}P_2$	143	928.87	338.15-513.15	1540-1810	Training
12	1-Butyl-3-methylimidazolium iodide	$C_8H_{15}IN_2$	134	266.12	209.86-370	285.8-336.9	Training
13	1-Butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	$C_{10}H_{15}F_6N_3O_4S_2\\$	123	419.36	190-363.18	524-602.1	Training
14	1-Hexyl-3-methylimidazolium trifluoromethanesulfonate	$C_{11}H_{19}F_3N_2O_3S$	112	316.34	283.15-425.15	484-589	Training

Table 3. Continued

15	2-Hydroxy-N-methylethanaminium propionate	C ₆ H ₁₅ NO ₃	111	149.19	287.15-326.15	323-336	Training	
16	2-Hydroxy-N-methylethanaminium pentanoate	$C_8H_{19}NO_3$	107	177.24	283.15-333.15	385-421	Training	
17	N-methyl-2-hydroxyethylammonium butanoate	C ₇ H ₁₇ NO ₃	92	163.21	286.15-336.15	357-385	Training	
18	1-Ethyl-3-methylimidazolium	CHENOS	76	260.23	303.2-425.15	379-425	Turining	
	trifluoromethanesulfonate	$C_7H_{11}F_3N_2O_3S$					Iraining	
	4-(Dimethylamino)-1-hexyl-pyridinium 1,1,1-							
19	trifluoro-N-	$C_{15}H_{23}F_6N_3O_4S_2\\$	73	487.48	298-425.15	663-825	Training	
	[(trifluoromethyl)sulfonyl]methanesulfonamide							
20	n-butyl-4-(n',n'-dimethylammonium)pyridinium	CHENOS	72	450 42	298-425.15	(11.720	Tasiains	
20	bis(trifluoromethylsulfonyl)imid	$C_{13}H_{19}F_6N_3O_4S_2$	/3	439.43		011-/39	Iraining	
21	1-Octyl-3-methylimidazolium	CHENOS	61	244.20	212 17 425 15	500 (00	Training	
	trifluoromethanesulfonate	$C_{13}H_{23}F_{3}N_{2}O_{3}S$	04	344.39	313.17-425.15	388-080	Iraining	
22	n-ethyl-4-(n',n'-dimethylammonium)pyridinium	CHENOS	61	421 27	212 12 425 15	500 650	Training	
	bis(trifluoromethylsulfonyl)imide	$C_{11}\Pi_{15}\Gamma_6 N_3 O_4 S_2$	04	431.37	515.12-425.15	390-039	Training	
22	1-Butylpyridinium tetrafluoroborate	C IL DE N	(2)	222.02	284.33-390	377.19-	т · ·	
23		C ₉ H ₁₄ BF ₄ N	03	223.02		428.5	Training	
24	Tetradecyl(trihexyl)phosphonium dicyanamide	$C_{34}H_{68}N_3P$	63	549.9	313.15-413.15	1060-1240	Training	
25	1-Butyl-1-methylpyrrolidinium	CHENOS	61	422.41	227 44 247 44	516 9 622 1	Validation	
25	bis[(trifluoromethyl)sulfonyl]imide	$C_{11}\Pi_{20}\Gamma_6 N_2 O_4 S_2$	01	422.41	237.44-347.44	340.8-022.4	validation	
26	1-Butylpyridinium	CHENOS	(0	416.36	323.18-425.15	507 (45	Turining	
	bis[(trifluoromethyl)sulfonyl]imide	$C_{11}H_{14}F_6N_2O_4S_2$	60			387-043	Iraining	
27	3-Methyl-1-propyl-1H-imidazolium (S)-2-	CUNO	50	271.31	244.25-357.7	471 569 1	Tusining	
	amino-4-carboxybutanoate	$C_{12}H_{21}N_{3}O_{4}$	58			4/1-308.1	Iraining	
20	1-Methyl-1-propylpyrrolidinium	CHENOS	57	400.20	202 15 250 15	541 606	Turining	
28	bis[(trifluoromethyl)sulfonyl]imide	$C_{10}H_{18}F_6N_2O_4S_2$	57	408.38	283.13-338.15	541-606	Training	

the resulting optimized equation for heat capacity, in $(J \text{ mol}^{-1} \text{ K}^{-1})$, is suggested. To compare the accuracy of the presented empirical model, the calculated heat capacity of training data versus corresponded values of the data bank has been presented in Fig. 1.

To estimate the applicability of the presented correlation in the prediction of heat capacity of data has not participated in training procedure, the proposed equation was verified using the remaining 541 data points, from 11 different ionic liquids (indicated in the last column of Table 3 and Table 3S). The heat capacities predicted with the correlation in this manner were compared to the corresponding experimental data. The resulting average absolute relative deviation (AARD%) is presented in Fig. 2.

The criteria for comparisons are AARD%, ARD% and RMSD which calculated as follows:

$$AARD\% = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{P_{i,exp} - P_{i,calc}}{P_{i,exp}} \right| \times 100$$
(13)

$$ARD\% = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{P_{i,exp} - P_{i,calc}}{P_{i,exp}} \right) \times 100$$
(14)

$$RMSD = \frac{1}{N} \sqrt{\sum_{i=1}^{N} \left(\frac{P_{i,exp} - P_{i,calc}}{P_{i,exp}}\right)^2 \times 100}$$
(15)

In Table 4 and Table 4S, the AARD% of ionic liquids calculated from the proposed and other models for each substance along with the values given by data bank were presented.

It is worth mentioning that the Muller-Albert correlation is only applicable to 59 ionic liquids among 141 liquids considered in this study. Because of the high average absolute relative deviation of the Muller-Albert correlation (AARD > 50%), the results of the Muller-Albert model were eliminated in comparisons accomplished in this study.

To best comparison of this study equation *versus* AHRH, FGMT and RHKHSR models, all considered data onto ionic liquids from databank were used and statistical parameters of four considered models with a new set of data are presented in Figs. 3-5.

Figures 3-5 present the statistical parameters including average absolute percentage relative deviation percentages (AARD% in Fig. 3), average relative deviation, (ARD% in Fig. 4), and root mean square deviation (RMSD in Fig. 5) of four considered models for all 6961 experimental data onto 141 ionic liquids.

Figure 6 shows the cumulative frequency of the proposed model and literature three models for all experimental data *versus* average absolute relative deviations of all ionic liquids considered.

Cumulative frequency analysis is the analysis of the frequency of the occurrence of values of a phenomenon less than a reference value. Cumulative frequency analysis is performed to obtain insight into how often a certain phenomenon (feature) is below a certain value. This may help in describing a situation in which the phenomenon is involved, or in planning interventions. This analysis can make a good comparison between all models for all AARD% values. Each curve with more tendencies towards the top left corner of the plot square has more accuracy than the lower curves.

Figure 5 also shows the accuracy of two considered methods in prediction of heat capacity of more than 141 pure ionic liquids. As shown in Fig. 3, the new equation is more accurate than the other newest model in heat capacity prediction.

The new method has successfully predicted 56% of all data with AARD% less than 2, and 96% of the data with AARD% less than 10. Only 0.6% of the vapor pressure data was predicted with AARD% of more than 15 by the new method. The AHRH equation, the second accurate method, predicted 46% of the data with AARD% less than 2, and 82% of the data with AARD% less than 10.

It showed that the new method has successfully predicted 64% of all data with AARD% less than 2, and 87% of the data with AARD% less than 5. Only 2% of the vapor pressure data was predicted with AARD% of more than 10 by the new method. The Muller *et al.* equation, the second accurate method, predicted 51% of the data with AARD% less than 2, and 78% of the data with AARD% less than 5. Hence the superiority of this new method over the other corresponding state has been verified for all data existed in the data bank.

CONCLUSIONS

Different methods can be used to calculate the heat capacities of ionic liquids such as empirical equations,

Fig. 1. Accuracy of the presented model versus training data.

Fig. 2. Accuracy of the presented model versus validation data.

No.	Name	Formula	No of Data	AHRH	FGMT	RHKHSR	This study
1	1-Butyl-3-methylimidazolium hexafluorophosphate	$C_8H_{15}F_6N_2P$	1633	1.18	1.19	14.68	1.07
2	1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	$C_{12}H_{19}F_6N_3O_4S_2\\$	502	2.46	7.88	10.67	2.54
3	1-Ethyl-3-methylimidazolium ethyl sulfate	$C_8H_{16}N_2O_4S$	450	5.39	19.05	16.01	2.27
4	1-Butyl-3-methylimidazolium tetrafluoroborate	$C_8H_{15}BF_4N_2$	374	2.83	15.69	36.26	2.94
5	1-Methyl-3-propylimidazolium bromide	$C_7H_{13}BrN_2$	261	17.77	29.42	55.89	7.51
6	1-Methyl-3-octylimidazolium tetrafluoroborate	$C_{12}H_{23}BF_4N_2$	246	1.38	5.73	28.71	0.79
7	1-Ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	$C_8 H_{11} F_6 N_3 O_4 S_2 \\$	178	3.05	11.97	11.87	3.22
8	1-Butyl-3-methylimidazolium dicyanamide	$C_{10}H_{15}N_5$	156	0.93	14.94	30.79	1.53
9	1-Butyl-3-methylimidazolium trifluoromethanesulfonate	$C_9H_{15}F_3N_2O_3S$	152	2.55	14.00	16.35	3.43
10	Trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]imide	$\mathrm{C}_{34}\mathrm{H}_{68}\mathrm{F}_{6}\mathrm{NO}_{4}\mathrm{PS}_{2}$	150	3.57	3.33	15.78	4.18
11	Trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate	$C_{38}H_{68}F_{18}P_2$	143	3.12	4.25	14.21	3.40
12	1-Butyl-3-methylimidazolium iodide	$C_8H_{15}IN_2$	134	35.27	28.07	51.76	17.56
13	1-Butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide	$C_{10}H_{15}F_6N_3O_4S_2\\$	123	7.10	8.26	13.68	3.50
14	1-Hexyl-3-methylimidazolium trifluoromethanesulfonate	$C_{11}H_{19}F_3N_2O_3S$	112	4.47	12.34	13.83	1.76
15	2-Hydroxy-N-methylethanaminium propionate	$C_6H_{15}NO_3$	111	20.68	12.57	7.28	8.34
16	2-Hydroxy-N-methylethanaminium pentanoate	$C_8H_{19}NO_3$	107	19.55	10.86	3.40	8.64
17	N-methyl-2-hydroxyethylammonium butanoate	$C_7H_{17}NO_3$	92	19.68	11.28	4.75	8.12
18	1-Ethyl-3-methylimidazolium trifluoromethanesulfonate	$C_7H_{11}F_3N_2O_3S$	76	1.18	18.30	15.39	4.26
19	4-(Dimethylamino)-1-hexyl-pyridinium 1,1,1- trifluoro-N- [(trifluoromethyl)sulfonyl]methanesulfonamide	$C_{15}H_{23}F_6N_3O_4S_2$	73	2.97	14.87	7.80	3.09
20	n-butyl-4-(n',n'- dimethylammonium)pyridinium bis(trifluoromethylsulfonyl)imid	$C_{13}H_{19}F_6N_3O_4S_2$	73	2.45	17.59	6.64	2.63

Shaabanzadeh et al./Phys. Chem. Res., Vol. 8, No. 1, 139-154, March 2020.

Table 4. Continued

21	1-Octyl-3-methylimidazolium	CuaHaaFaNaOaS	64	5 77	10.44	13 59	1 95
21	trifluoromethanesulfonate	01311231 31 2030	01	5.11	10.44	15.59	1.95
	n-ethyl-4-(n',n'-						
22	dimethylammonium)pyridinium	$C_{11}H_{15}F_6N_3O_4S_2\\$	64	1.44	20.12	4.92	1.53
	bis(trifluoromethylsulfonyl)imide						
23	Tetradecyl(trihexyl)phosphonium dicyanamide	$C_{34}H_{68}N_3P$	63	3.90	5.05	28.05	4.05
24	1-Butylpyridinium tetrafluoroborate	$C_9H_{14}BF_4N$	63	0.69	5.50	10.55	4.44
25	1-Butyl-1-methylpyrrolidinium	C. H. F.N.O.S.	61	5 54	7 75	15.61	2 14
23	bis[(trifluoromethyl)sulfonyl]imide	C111120161V2O452	01	5.54	1.15	15.01	2.14
26	1-Butylpyridinium	C.H. F.N.O.S.	60	0.81	4 70	6 10	1.60
20	bis[(trifluoromethyl)sulfonyl]imide	C111141°61 v2O452	00	0.01	4.70	0.10	1.09
27	3-Methyl-1-propyl-1H-imidazolium (S)-2-	CallerNaO	50	6 68	14.93	5.03	2 24
21	amino-4-carboxybutanoate	C ₁₂ 11 ₂ 11 ₃ O ₄	50	0.00	14.75	5.05	2.24
28	1-Methyl-1-propylpyrrolidinium	$C_{10}H_{10}E_{1}N_{2}O_{1}S_{2}$	57	2.31	4 58	18.08	4 59
20	bis[(trifluoromethyl)sulfonyl]imide	C 101 1 81 61 (20402	57		4.50	10.00	4.39
29	1-Hexyl-3-methylimidazolium	CuaHuaFaNaP	51	11.86	14 64	27.26	11 99
29	hexafluorophosphate		51	11.00	11.01	27.20	11.99
30	Tributylmethylphosphonium methylsulphate	$C_{14}H_{33}O_4PS$	50	12.78	24.45	11.28	9.23
31	1-Tetradecyl-3-methylimidazolium	CaoHacEcNaO4Sa	50	1.31	0.98	11 74	1 75
51	bis(trifluoromethylsulfonyl)imide	02011331 01 130 402	50		0.90	11.7 1	1.75
32	N-(2-hydroxyethyl)-N,N-	C-H18BrNO	48	2.62	31.76	2.87	0 59
52	dimethylpropanaminium bromide	C/11/8B1100	-10	2.02			0.39
33	Butyltrimethylammonium	$C_0H_{10}F_2N_2O_4S_2$	48	5.98	26.68	8 60	5 43
00	bis(trifluoromethylsulfonyl)imide	0 9 1 18 0 12 0 40 2		0.50	20100	0.00	01.0
34	1-Butyl-3-methylimidazolium octyl sulfate	$C_{16}H_{32}N_{2}O_{4}S$	46	4.86	7.33	4.03	1.53
35	1-Ethyl-3-methylimidazolium tetrafluoroborate	$C_6H_{11}BF_4N_2$	44	0.79	20.26	36.24	0.82
36	1-Butyl-3-methylpyridinium 1,1,1-trifluoro-N-	$C_{12}H_{16}F_6N_2O_4S_2$	43	3 10.19	4.01	18 41	11 72
20	[(trifluoromethyl)sulfonyl]methanesulfonamide					10.11	11.72
37	1-Methyl-3-propylimidazolium	CoH12FcN2O4S2	42	8 33	4 38	20.89	7 10
	bis[(trifluoromethyl)sulfonyl]imide	C911131 61 V3O452	72	0.55	4.50	20.07	7.10
38	1-Ethyl-3-methyl-1H-imidazolium	$C_{10}H_{11}N_5$	40	2.77	21.63	18 41	2.49
	tricyanomethanide					10.71	2.17
30	1-Hexyl-3-methylimidazolium	C10H10BF4N2	33	0.47	7.92	27.22	1 43
27	tetrafluoroborate	- 10191 41 12					1.10
40	1-Octyl-3-methylimidazolium	$C_{14}H_{22}F_{2}N_{2}O_{4}S_{2}$	33	4 69	8 83	9.09	5 17
	bis[(trifluoromethyl)sulfonyl]imide	C1411231 61N3O402	55	1.07	0.00	1.01	0.17

A New Simple Model to Calculate the Heat Capacity of Pure Ionic Liquids/Phys. Chem. Res., Vol. 8, No. 1, 139-154, March 2020.

Fig. 3. AARD of four considered models.

Fig. 4. ARD of four considered models.

Shaabanzadeh et al./Phys. Chem. Res., Vol. 8, No. 1, 139-154, March 2020.

Fig. 5. RMSD of four considered models.

Fig. 5. AARD% of two methods in calculating heat capacity as a function of cumulative frequency.

A New Simple Model to Calculate the Heat Capacity of Pure Ionic Liquids/Phys. Chem. Res., Vol. 8, No. 1, 139-154, March 2020.

group contributions, artificial neural networks, etc. In this study, two empirical literature methods are compared and evaluated. The AHRH model with 13 constant parameters, and FGMT substance-independent correlation with 6 parameters, and RHKHSR model with 61 constant parameters are considered. These three models generally give a good prediction of accuracy relative to other literature models which are not discussed in this study. A new 7-constant non-linear predictive model was recommended to estimate the heat capacity of pure ionic liquids more accurate than literature commonly used models. The presented equation is a function of temperature, molecular weight and the number of elements such as hydrogen, carbon, nitrogen, oxygen, etc. in cation and anions. To validate the proposed model, the heat capacity of 141 pure ionic liquids with 6961 data points has been examined and an overall average absolute percentage deviation of 3.83% is achieved.

REFERENCES

- Wasserscheid, P.; Seiler, M., Leveraging Gigawatt Potentials by Smart Heat-Pump Technologies Using Ionic Liquids. *Chem. Sus. Chem.* 2011, *4*, 459-463, DOI: 10.1002/cssc.201000191.
- [2] Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H., CO₂ Capture by a task-specific ionic liquid. *J. Am. Chem. Soc.* 2002, *124*, 926-927, DOI: 10.1021/ja017593d.
- [3] Völkl, J.; Müller, K.; Mokrushina, L.; Arlt, W., A priori property estimation of physical and reactive CO₂ absorbents. *Chem. Eng. Technol.* **2012**, *35*, 579-583, DOI: 10.1002/ceat.201100319.
- [4] Zhang, H.; Wu, J.; Zhang, J.; He, J., 1-Allyl-3methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. *Macromolecules*. 2005, *38*, 8272-8277, DOI: 10.1021/ma0505676.
- [5] Freemantle, M., An Introduction to Ionic Liquids, Royal Society of Chemistry, 1st Edition, Cambridge, UK, 2010.
- [6] Torralba-Calleja, E.; Skinner, J.; Gutiérrez-Tauste, D., CO₂ capture in ionic liquids: a review of solubilities and experimental methods. *J. Chem.* **2013**, *2013*, 1-16, DOI: 10.1155/2013/473584.

- [7] Maginn, E. J., Design and Evaluation of Ionic Liquids as Novel CO₂ Absorbents, in, University of Notre Dame, United States, 2007.
- [8] Althuluth, M. A. M., Natural Gas Sweetening Using Ionic Liquids, in, PhD Thesis, The Petroleum Institute, Abu Dhabi, 2014.
- [9] Shiflett, M. B.; Niehaus, A. M. S.; Yokozeki, A., Separation of CO₂ and H₂S using roomtemperature ionic liquid [bmim][MeSO₄]. *J. Chem. Eng. Data.* 2010, 55, 4785-4793, DOI: 10.1021/je1004005.
- [10] Heintz, Y. J.; Sehabiague, L.; Morsi, B. I.; Jones, K. L.; Luebke, D. R.; Pennline, H. W., Hydrogen sulfide and carbon dioxide removal from dry fuel gas streams using an ionic liquid as a physical solvent. *Energy Fuel.* 2009, 23, 4822-4830, DOI: 10.1021/ef900281v.
- [11] Jalili, A. H.; Rahmati-Rostami, M.; Ghotbi, C.; Hosseini-Jenab, M.; Ahmadi, A. N., Solubility of H₂S in ionic liquids [bmim][PF₆], [bmim][BF₄] and [bmim][Tf₂N], *J. Chem. Eng. Data.* **2009**, *54*, 1844-1849, DOI: 10.1021/je8009495.
- [12] Jalili, A. H.; Mehdizadeh, A.; Shokouhi, M.; Ahmadi, A. N.; Hosseini-Jenab, M.; Fateminassab, F., Solubility and diffusion of CO₂ and H₂S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. *J. Chem. Thermodyn.* 2010, 42, 1298-1303, DOI: 10.1016/j.jct.2010.05.008.
- [13] Pomelli, C. S.; Chiappe, C.; Vidis, A.; Laurenczy, G.; Dyson, P. J., Influence of the interaction between hydrogen sulfide and ionic liquids on solubility: experimental and theoretical investigation, *J. Phys. Chem. B.* 2007, *111*, 13014-13019, DOI: 10.1021/ jp076129d.
- [14] Harooni, A. B.; Marghmaleki, A. N.; Mohammadi, A. H., Prediction of heat capacities of ionic liquids using chemical structure-based networks. *J. Mol. Liq.* 2017, 227, 324-332, DOI: 10.1016/j.molliq.2016.11.119.
- [15] Gardas, R. L.; Coutinho, J. A. P., A group contribution method for heat capacity estimation of ionic liquids. *Ind. Eng. Chem. Res.* 2008, 47, 5751-5757, DOI: 10.1021/ie800330v.
- [16] Zarandi, M. B.; Bioki, H. A.; Mirbagheri, Z.; Tabbakh, F.; Mirjalili, G., Effect of crystallinity and irradiation on thermal properties and specific heat capacity of LDPE & LDPE/EVA. *Appl Radiat. Isot.*

2012, 70, 1-5, DOI: 10.1016/j.apradiso.2011.09.001.

- [17] Soriano, A. N.; Agapito, A. M.; Lagumbay, L. J. L. I.; Caparanga, A. R.; Li, M. H., A simple approach to predict molar heat capacity of ionic liquids using group-additivity method. *J. Taiwan. Inst. Chem. Eng.* 2010, *41*, 307-314, DOI: 10.1016/j.jtice.2009.11.003.
- [18] Valderrama, J. O.; Rojas, R. E., Mass connectivity index, a new molecular parameter for the estimation of ionic liquid properties. *Fluid Phase Equilibria*. 2010, 297, 107-112, DOI: 10.1016/j.fluid.2010.06.015.
- [19] Sattari, M.; Gharagheizi, F.; Ilani-Kashkouli, P.; Mohammadi, A. H.; Ramjugernath, D., Development of a group contribution method for the estimation of heat capacities of ionic liquids. *J. Therm. Anal. Calorim.* **2014**, *115*, 1863-1882, DOI: 10.1007/ s10973-013-3474-8.
- [20] Müller, K.; Albert, J., Contribution of the individual ions to the heat capacity of ionic liquids. *Ind. Eng. Chem. Res.* 2014, 53, 10343-10346, DOI: 10.1021/ ie501575n.
- [21] Ahmadi, A. R.; Haghbakhsh, R.; Raeissi, S.; Hemmati, V., A simple group contribution correlation for the prediction of ionic liquid heat capacities at different temperatures. *Fluid Phase Equilibria*. 2015,

403, 95-103, DOI: 10.1016/j.fluid.2015.06.009.

- [22] Farahani, N.; Gharagheizi, F.; Mirkhani, S. A.; Tumba, K., A simple correlation for prediction of heat capacities of ionic liquids. *Fluid Phase Equilibria*. 2013, *337*, 73-82, DOI: 10.1016/j.fluid.2012.09.030.
- [23] Zhang, D.; Jiang, W.; Liu, L.; Yu, K.; Hong, M.; Tong, J., The molar surface Gibbs energy and polarity of ether-functionalized ionic liquids. *The. J. Chem. Therm.* 2019, *138*, 313-320, DOI: 10.1016/ j.jct.2019.06.027.
- [24] Oster, K.; Jacquemin, J.; Hardacre, C.; Ribeiro, A. P. C.; Elsinawi, A., Further development of the predictive models for physical properties of pure ionic liquids: Thermal conductivity and heat capacity. *J. Chem. Therm.* 2018, *118*, 1-15, DOI: 10.1016/ j.jct.2017.10.010.
- [25] Rostami, A.; Sarapardeh, A. H.; Talkhooncheh, A. K.; Husein, M. M.; Shamshirband, S.; Rabczuk, T., Modeling heat capacity of ionic liquids using group method of data handling: A hybrid and structurebased approach. *Int. J. Heat. Mass. Trans.* 2019, *129*, 7-17, DOI: 10.1016/j.ijheatmasstransfer.2018.09.057.
- [26] NIST Ionic Liquids Database-(ILThermo), Version 2.0; available via the Internet at http://ilthermo.boulder.nist.gov.